Acknowledgment. We are grateful to a referee and Dr. Cheves Walling for valuable comments.

References and Notes

- (1) Supported by the National Science Foundation (Grant No, CHE-77-28366)
- (2)For a recent review dealing with supported reagents, see McKillop, A.; Young, D. Synthesis 1979, 401. For a review dealing with organic reactions at alumina surfaces, see Posner, G. H. Angew. Chem., Int. Ed. Engl. 1978, 17 487
- See: Liu, K.-T.; Tong, Y.-C. J. Org. Chem. 1978, 43, 2717, Mazur, Y.; Keinan, E. Ibid. 1978, 43, 1020, and references cited therein.
 Liotta, C. L.; Harris, H. P. J. Am. Chem. Soc. 1974, 96, 2250.
- Bio-Rad Laboratories, Richmond, Calif. (AG-7, 100-200 mesh
- (6) Regen, S. L.; Quici, S.; Liaw, S. J. J. Org. Chem. 1979, 44, 2029. (7)
- in this experiment, 5 mL of 0.5 M 1-bromooctane in toluene was reacted with 0.5 g of 1 for 48 h at 90 °C and yielded 1.14 mmol of cyanooctane as determined by GLC. Further heating for 24 h did not change the yield significantly
- (8) Analyses were carried out on a Hewlett-Packard 5830 flame ionization instrument using a 2 ft X 0.125 in QF 1(10%) on Chromosorb W column at 160°C.
- Values of k_0 at 70, 90 and 100 °C were 2.1 × 10⁻⁵, 6.9 × 10⁻⁵, and 24.3 × 10⁻⁵ L mol⁻¹ s⁻¹, respectively, and gave $\Delta H^{\pm} = 18.4 \pm 1.8$ kcal mol⁻¹ and $\Delta S^{\pm} = -26.2 \pm 5$ eu. (9)
- (10) In this experiment, 0.25 g of 1 was reacted with 25 mL of 0.2 M 1-bro-mooctane in toluene at 110 °C.
- (11) The observed first-order rate constant was $1.9 \times 10^{-5} \text{ s}^{-1}$. The concentration of NaCN in the organic phase was 4.8×10^{-4} M (determined by eaction of an aliquot with excess 1-bromooctane at 100 °C).
- (12) In principle, two fundamentally different mechanisms for displacement at the alumina surface can be envisaged. In the first, A, a soluble organic halide undergoes direct attack by an impregnated cyanide ion. In the second, B, the halide is adsorbed prior to displacement. While the observed first-order dependence on 1-bromooctane is in agreement with A, it is also consistent with B if the organic halide is weakly adsorbed. To the extent that alumina may assist the departure of bromide ion from the reactant. the apparent reactivity of cyanide must be regarded as a maximum value

Steven L. Regen,* Silvio Quici, Michael D. Ryan Department of Chemistry, Marquette University Milwaukee, Wisconsin 53233 Received June 28, 1979

Symmetrical Triamino-per-O-methyl- α -cyclodextrin: Preparation and Characterization of Primary Trisubstituted α -Cyclodextrins

Sir:

Exploitation of the unique geometry of cyclodextrins for the construction of models of receptor binding and of enzyme catalysis has been severely limited by the dearth of well-characterized polysubstituted derivatives. Thus, while the efficient modification of *all* of the primary hydroxyl groups of α - and β -cyclodextrins has been described¹ and numerous monosubstituted compounds have been reported,² no derivatives of intermediate substitution number have been described for which the positions of substitution are established.³ We report here the preparation and characterization of 6,6",6""-triamino-6,6",6""-trideoxy-6',6"",2,2',2",2",2"",2"",3,-3', 3'', 3''', 3''''-pentadeca-O-methyl- α -cyclodextrin (1) (= symmetrical triamino-per-O-methyl- α -CD), a trisubstituted α -cyclodextrin of known regiosubstitution that possesses a threefold axis of symmetry (Figure 1).

Synthesis. The synthesis of 1 is outlined in Scheme I. Reaction of purified⁴ α -cyclodextrin 2 with 3.3 equiv of trityl chloride in pyridine (55 °C, 24 h) gave a multitude of products.5 Thin-layer chromatography (TLC) on silica gel (butanone-water-3-methylbutan-l-ol, 7:1:1) showed six major products, having R₁ values of 0.37, 0.28, 0.26, 0.23, 0.20, and 0.14, and about 12 minor products. The desired symmetrically substituted 6,6",6""-tri- \hat{O} -trityl- α -cyclodextrin 3 (R_f of 0.28) was isolated in 23% yield after "short column chromatography"⁶ on silica gel eluting with butanone-water-3-methylbutan-1-ol, 100:10:1.7 The product was identified by ¹H and

Figure 1. Drawing of symmetrical triamino-per-O-methyl- α -cyclodextrin (1). The coordinates used for the cyclodextrin skeleton were based on crystal structure data summarized by Saenger.¹¹ The shaded circles represent methoxyl groups and the full circles represent ammonium groups

Scheme I. Synthetic Route to Symmetrical Triamino-per-O-methyl- α -cyclodextrin (1)

¹³C NMR spectroscopy (vide infra).⁸ Methylation of the 15 hydroxyl groups of 3 was accomplished using methyl iodide and crystalline sodium hydride in dimethylformamide (DMF).[†] Removal of the three trityl groups, by brief treatment of 4 in a two-phase system (concentrated hydrochloric acidchloroform), gave 5. Reaction of the three free hydroxyl groups with methanesulfonyl chloride in pyridine, followed by displacement of the sulfonate groups with sodium azide in DMF, gave the symmetrical triazido-per-O-methyl- α -cyclodextrin (7). Reduction of 7 with triphenylphosphine and ammonia in dioxane⁹ gave the desired product 1, isolated as its trihydrochloride salt. Each of the five reactions from 3 to 1 went in vields between 94 and 97%, and 1 was isolated in 19% overall yield from α -cyclodextrin 2.

In a similar fashion, mono-6-amino-6-deoxy-6',6",6",-6'''',6''''',2,2',2'',2''',2'''',3,3',3'',3''',3'''',3''''-heptadeca-O-methyl- α -cyclodextrin hydrochloride (8) (= monoamino-per-O-methyl-a-CD) was prepared in 24% overall yield, beginning with the preparation of mono-6-O-trityl- α -cyclodextrin.^{2a}

Figure 2. ¹³C NMR spectrum of symmetrical tritrityl-per-O-methyl- α -cyclodextrin (4): solution in CDCl₃, chemical shifts from Mc₄Si. The downfield trityl signals are not shown. Insets show the C-1 signals from the spectra of two isolated unsymmetrical derivatives.

Figure 3, ¹³C NMR spectrum of symmetrical triamino-per-O-methyl- α -cyclodextrin (1): solution in D₂O with internal methanol standard, chemical shifts from methanol referred to external Me₄Si.

Characterization. The characterization of compound 1 and of compounds 3-7 relied on their threefold rotational axis of symmetry, which is exhibited in their ¹H and ¹³C NMR spectra.¹⁰ Of the *four* possible primary trisubstituted isomers, only the desired isomer retains any rotational symmetry. For instance, the ¹³C NMR spectrum of 3 (Figure 2) shows only one kind of trityl group and two kinds of α -glucose unit. Although the expected two pairs of signals for the 12 C-2 and C-3 atoms are not resolved (81.3 and 81.5 ppm), all other predicted signals are seen: C-1 at 100.2 and 98.5; C-4 at 82.4 and 82.2; C-5 at 71.8 and 70.9; and C-6 at 70.6 and 63.2 ppm. Remarkably, the threefold symmetry is exhibited even by the 15 O-methyl groups, 12 of which are on the secondary side of the cyclodextrin torus, away from the substitution site: C-2 OCH₃ at 61.9 and 61.5; C-3 OCH3 at 58.2 and 57.6; and C-6 OCH3 at 58.6 ppm. As expected, only one type of trityl group is observed, with the single quaternary carbon signal at 86.3 ppm (the four other singlets, for the ortho, meta, para, and ipso carbons, are downfield and are not shown in Figure 2). (In contrast, two of the unsymmetrically substituted tri-O-trityl derivatives isolated from the tritylation reaction showed three different trityl groups plus a multiplicity (theoretically six) of α -glucose units. The number of spectroscopically distinct α -glucose units was most clearly seen in the C-1 signals of the ¹³Č NMR spectra (see insets in Figure 2).) The NMR spectra¹⁰ for 1 and 3-7 all exhibit the expected symmetry, while those for unsymmetrical derivatives do not. In the ¹³C NMR

spectrum of 1 (Figure 3), the two C-1 signals are not resolved, but other signals (for C-3 through C-6) show the expected symmetry doubling. These results confirm that 1 is the desired isomer in high purity.8

The procedure outlined here provides access to a wide variety of cyclodextrin derivatives, and the rational synthesis of sophisticated model systems employing regiospecifically disposed functionality at the primary end of the cyclodextrin cavity and additional functionality at the secondary end, is now possible.

Acknowledgments. We are indebted to Teijin Ltd. (Tokyo) for gifts of cyclodextrins and to the National Science Foundation for support.

References and Notes

- (1) Boger, J.; Corcoran, R.; Lehn, J.-M. Helv. Chim. Acta 1978, 61, 2190.
- (1) Böger, J., Corcoran, R., Lerin, J.-M. Heiv. Chim. Acta 1976, 97, 2150.
 (2) (a) Meiton, L. D.; Slessor, K. N. Carbohydr. Res. 1971, 18, 29. (b) Breslow, R; Overman, L. E. J. Am. Chem. Soc. 1970, 92, 1075. (c) Iwakura, Y; Uno, K.; Toda, F.; Onozuka, S.; Halton, K.; Bender, M. L. Ibid. 1975, 97, 4432.
 (d) Siegal, B.; Pinter, A.; Breslow, R. Ibid. 1977, 99, 2309.
- The formation of a primary disulfonate β -cyclodextrin and subsequent derivatives has been reported: Tabushi, I.; Shimofawa, K.; Shimizu, N.; Shirakata, H.; Fujita, K. J. Am. Chem. Soc. 1976, 98, 7855. Tabushi, I.; Shimokawa, K.; Fujita, K. Tetrahedron Lett. 1977, 1527. The disulfonate β -cyclodextrin product was found by other workers to be a mixture of two isomers, which were not preparatively separated: Breslow, R.; Doherty,
- Solutions, which were been been advery separated: biestow, N., Bollety, J. B.; Guillot, G.; Lipsey, C. J. Am. Chem. Soc. **1978**, 100, 3227. French, D. J. Am. Chem. Soc. **1949**, 71, 353. A procedure for the preparation of a tetratritylated β -cyclodextrin has been reported: Cramer, F.; Mackensen, G.; Sensse, K. Chem. Ber. **1969**, 102, 494. In our hands their procedure gives a mixture of compounds.
- (6) Hunt, B. J.; Rigby, W. Chem. Ind. (London) 1967, 1868. E. Merck silica gel 60 G No. 7731 was used.
- The compounds of $R_{\rm f}$ 0.28, 0.26, 0.23, and 0.20 were separated and identified by ¹H and ¹³C NMR spectroscopy as primary substituted tritri-(7)tylated α -cyclodextrins. Thus each of the four possible primary substituted products was formed. The material at Rf 0.37 proved to be a mixture of primary (C-6) substituted tetratritylcyclodextrins, while that at $R_{\rm f}$ 0.14 was identified as a mixture of the ditritylcyclodextrins. The reaction conditions could be adjusted to favor di-, tri-, or tetrasubstitution. Isolation and characterization of symmetrical di- and tetrasubstituted products is possible, in addition to various unsymmetrical isomeric products, the identity of which is more difficult to establish precisely (Boger, J.; Knowles, J. R., unpublished results).
- (8) Chemical shifts are reported with reference to tetramethylsilane. Satisfactory elemental analyses were obtained for all compounds; infrared spectra and optical rotations were performed where appropriate. Each compound was examined critically on several TLC systems and found to be free from impurities (<1%).
- (a) Mungall, W. S.; Greene, G. L.; Heavner, G. A.; Letsinger, R. L. J. Org. Chem. 1975, 40, 1659. (b) Hata, T.; Yamamoto, I.; Sekine, M. Chem. Lett. 1975. 977
- (10) Assignments for most of the signals in the ¹³C NMR spectra for all compounds reported were based upon correlations from this work, including unpublished results on di- and tetrasubstituted compounds, studies of the primary hexasubstituted cyclodextrins,¹ and other data on cyclodextrins and other carbohydrates. E.g.: Colson, P.; Jennings, H. J.; Smith, I. C. P. *J. Am. Chem. Soc.* **1974**, *96*, 8081. Takeo, K.; Hirose, K.; Kuge, T. *Chem. Lett.* **1973**, 1233. Breitmaier, E.; Voelter, W. ¹³C NMR Spectroscopy"; Verlag-Chemie: Weinheim/Berstr., Germany, 1975, pp 223-242. However. the identity of the symmetrical derivative 1 and of its precursors does not rest on the individual assignments of signals, but on the simple spectra obtained by virtue of the symmetry of the compounds.
- (11) Saenger, W. In "Environmental Effects on Molecular Structure", B. Pullman, Ed.; D. Reidel: Dordrecht, Holland, 1976; pp 265-305

Joshua Boger, Daniel G. Brenner, Jeremy R. Knowles* Department of Chemistry, Harvard University Cambridge, Massachusetts 02138 Received July 30, 1979

Symmetrical Triamino-per-O-methyl- α -cyclodextrin: A Host for Phosphate Esters Exploiting Both Hydrophobic and Electrostatic Interactions in Aqueous Solution

Sir:

With the aim of designing a host molecule that would catalyze a simple chemical reaction by specific stabilization of its transition state,¹ we have opted first to investigate the synthesis